

General Certificate of Education Advanced Subsidiary Examination January 2012

Mathematics

MPC1

Unit Pure Core 1

Friday 13 January 20129.00 am to 10.30 am

For this paper you must have:

- the blue AQA booklet of formulae and statistical tables.

You must not use a calculator.

Time allowed

- 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer the questions in the spaces provided. Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- The use of calculators is not permitted.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

1 The point A has coordinates $(6,-4)$ and the point B has coordinates $(-2,7)$.
(a) Given that the point O has coordinates $(0,0)$, show that the length of $O A$ is less than the length of $O B$.
(b) (i) Find the gradient of $A B$.
(ii) Find an equation of the line $A B$ in the form $p x+q y=r$, where p, q and r are integers.
(c) The point C has coordinates $(k, 0)$. The line $A C$ is perpendicular to the line $A B$. Find the value of the constant k.

2 (a) Factorise $x^{2}-4 x-12$.
(1 mark)
(b) Sketch the graph with equation $y=x^{2}-4 x-12$, stating the values where the curve crosses the coordinate axes.
(c) (i) Express $x^{2}-4 x-12$ in the form $(x-p)^{2}-q$, where p and q are positive integers.
(ii) Hence find the minimum value of $x^{2}-4 x-12$.
(d) The curve with equation $y=x^{2}-4 x-12$ is translated by the vector $\left[\begin{array}{r}-3 \\ 2\end{array}\right]$. Find an equation of the new curve. You need not simplify your answer.
(2 marks)

3 (a) (i) Simplify $(3 \sqrt{2})^{2}$.
(ii) Show that $(3 \sqrt{2}-1)^{2}+(3+\sqrt{2})^{2}$ is an integer and find its value. (4 marks)
(b) Express $\frac{4 \sqrt{5}-7 \sqrt{2}}{2 \sqrt{5}+\sqrt{2}}$ in the form $m-\sqrt{n}$, where m and n are integers. (4 marks)

The curve with equation $y=x^{5}-3 x^{2}+x+5$ is sketched below. The point O is at the origin and the curve passes through the points $A(-1,0)$ and $B(1,4)$.

(a) Given that $y=x^{5}-3 x^{2}+x+5$, find:
(i) $\frac{\mathrm{d} y}{\mathrm{~d} x}$;
(3 marks)
(ii) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
(1 mark)
(b) Find an equation of the tangent to the curve at the point $A(-1,0)$.
(c) Verify that the point B, where $x=1$, is a minimum point of the curve. (3 marks)
(d) The curve with equation $y=x^{5}-3 x^{2}+x+5$ is sketched below. The point O is at the origin and the curve passes through the points $A(-1,0)$ and $B(1,4)$.

(i) Find $\int_{-1}^{1}\left(x^{5}-3 x^{2}+x+5\right) \mathrm{d} x$.
(5 marks)
(ii) Hence find the area of the shaded region bounded by the curve between A and B and the line segments $A O$ and $O B$.

5 The polynomial $\mathrm{p}(x)$ is given by $\mathrm{p}(x)=x^{3}+c x^{2}+d x-12$, where c and d are constants.
(a) When $\mathrm{p}(x)$ is divided by $x+2$, the remainder is -150 .

Show that $2 c-d+65=0$.
(3 marks)
(b) Given that $x-3$ is a factor of $\mathrm{p}(x)$, find another equation involving c and d.
(2 marks)
(c) By solving these two equations, find the value of c and the value of d.
$6 \quad$ A rectangular garden is to have width x metres and length $(x+4)$ metres.
(a) The perimeter of the garden needs to be greater than 30 metres.

Show that $2 x>11$.
(b) The area of the garden needs to be less than 96 square metres.

Show that $x^{2}+4 x-96<0$.
(1 mark)
(c) Solve the inequality $x^{2}+4 x-96<0$. (4 marks)
(d) Hence determine the possible values of the width of the garden.
(l mark)
$7 \quad$ A circle with centre C has equation $x^{2}+y^{2}+14 x-10 y+49=0$.
(a) Express this equation in the form

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

(b) Write down:
(i) the coordinates of C;
(ii) the radius of the circle.
(c) Sketch the circle.
(d) A line has equation $y=k x+6$, where k is a constant.
(i) Show that the x-coordinates of any points of intersection of the line and the circle satisfy the equation $\left(k^{2}+1\right) x^{2}+2(k+7) x+25=0$.
(ii) The equation $\left(k^{2}+1\right) x^{2}+2(k+7) x+25=0$ has equal roots. Show that

$$
12 k^{2}-7 k-12=0
$$

(iii) Hence find the values of k for which the line is a tangent to the circle.

